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Abstract

Let k[X] be the algebra of polynomials in n variables over a field k of character-
istic zero, and let f ∈ k[X]r k. We present a construction of a derivation d of k[X]
whose ring of constants is equal to the integral closure of k[f ] in k[X]. A similar
construction for fields of rational functions is also given.

1 Introduction

Let k be a field of characteristic zero and let k[X] := k[x1, . . . , xn] be the polynomial
ring in n variables over k. If d : k[X] → k[X] is a derivation of k[X], then we denote by
k[X]d the ring of constants of d, that is, k[X]d = {w ∈ k[X]; d(w) = 0}.

Rings of constants appear in various classical problems. For example the Cancellation
Problem asks if the ring of constants of a locally nilpotent derivation on a polynomial
ring having a slice is a polynomial ring, Hilbert’s fourteenth problem asks if the ring of
constants of a derivation on a polynomial ring over a field k is a finitely generated k-algebra
and the Jacobian Problem asks if the ring of constants associated to a Jacobian derivation
of the form ∂

∂Fn
is a polynomial ring generated by F1, . . . , Fn−1, when detJF ∈ k∗ (for

more details we refer to [4]).
It is well known that every k-algebra B of the form k[X]d, where d is a derivation

of k[X], is integrally closed in k[X] and B0 ∩ k[X] = B (where B0 denotes the quotient
field of B). In [9] (or [10]) the third author proved that every k-subalgebra B of k[X]
which is integrally closed in k[X] with B0 ∩ k[X] = B can be realized as the ring of
constants of some derivation of k[X]. However his proof of this fact is not effective. For
a given subalgebra B of k[X] satisfying the above conditions it is not easy to construct a
derivation d of k[X] such that k[X]d = B. We know only that such a derivation exists.

In this paper we discuss an effective counterpart of this result for k-subalgebras B
generated over k by a one element. More precisely, for a given polynomial f ∈ k[X] \ k
we present (in Section 3) a construction of an explicit derivation d of k[X] whose ring of



constants is equal to the integral closure of the ring k[f ] in k[X]. A similar construction
we present also for a given rational function ϕ ∈ k(X) r k.

Note that there exists an algorithm, given by J. Brennan and W. Vasconcelos in [2] (see
also [15]), to compute the integral closure of finitely generated k-domains. This algorithm
is based on the theory of Gröbner basis and Rees algebras. In our case we know, by Zaks’
theorem (see [16] or [4], Theorem 1.2.26), that the integral closure of k[f ] in k[X] is of
the form k[g] for some g ∈ k[X] \ k, so in our case the general algorithm of Brennan and
Vasconcelos has a simpler form.

It is well known that if d is a derivation of k[X], then the ring k[X]d coincides with the
k-algebra of all polynomial first integrals of the following system of ordinary differential
equations:

dxi
dt

= fi(x1(t), . . . , xn(t)), i = 1, . . . , n,

where f1 = d(x1), . . . , fn = d(xn). The field of constants k(X)d coincides with the field of
all rational first integrals of this system. Hence, for a given polynomial f ∈ k[X] \ k we
are ready to construct a system of ordinary differential equations such that its k-algebra
of all polynomial first integrals is equal to the integral closure of k[f ] in k[X]. A similar
construction we have for a given rational function ϕ ∈ k(X) r k.

Note also that our considerations are quite obvious for n ≤ 2. If n = 1 and f ∈ k[x1]\k,
then the integral closure of k[f ] in k[x1] is equal to k[x1]. So, in this case, only the zero
derivation of k[x1] satisfies the mentioned conditions. If n = 2 and f ∈ k[x1, x2] \ k, then
the jacobian derivation d = ∂f

∂x2
∂
∂x1
− ∂f

∂x1
∂
∂x2

satisfies our conditions. In this case the ring

k[x1, x2]
d is equal to the integral closure of k[f ] in k[x1, x2] (see [7]).

2 Preliminaries

Throughout this paper all rings and algebras are commutative, k denotes a field of
characteristic zero, k[X] := k[x1, . . . , xn] is the polynomial ring in n variables over k, and
k(X) := k(x1, . . . , xn) is the field of quotients of k[X]. If A is a domain, then we denote
by A0 the field of quotients of A.

In this section we present some preparatory facts which will be important in the next
section. Moreover, we present here examples of derivations with trivial fields of constants.

Let us start from the following lemma which is a special case of a more general fact
(see, for example, [1] p.296 or [4] Proposition D.1.7). We present a proof because, in our
case, this proof is easy.

Lemma 2.1. If h ∈ k[X], then k[h]0 ∩ k[X] = k[h].

Proof. Assume that u = u(X) ∈ k[h]0 ∩ k[X]. Then u = p(h)
q(h)

, where p(t), q(t) are

relatively prime polynomials belonging to k[t], the ring of polynomials in the one varia-
ble t over k. There exist polynomials α(t), β(t) ∈ k[t] such that 1 = α(t)p(t) + β(t)q(t).
Hence, in the ring k[X] we have: 1 = α(h)p(h) + β(h)q(h) = α(h)u(X)q(h) + β(h)q(h) =
(α(h)u(X) + β(h)) q(h) and this implies that the polynomial q(h) is invertible in k[X].
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So, q(h) ∈ k, that is, u = p(h)
q(h)
∈ k[h]. Therefore, k[h]0 ∩ k[X] ⊆ k[h]. The opposite

inclusion is obvious. �

Let us recall the following well known theorem (see [16] or [4] Theorem 1.2.26).

Theorem 2.2 (Zaks). If R is a Dedekind subring of k[X] containing k, then there exists
a polynomial f ∈ k[X] such that R = k[f ].

Consider now the following family M of k-subalgebras of k[X]:

M = {k[h]; h ∈ k[X] r k} .

If k[h1] ( k[h2], for some h1, h2 ∈ k[X] r k, then deg h2 < deg h1 and hence, in the
familyM there exist maximal elements. As a consequence of Theorem 2.2 we obtain the
following lemma (see [11] Lemma 3.1 or [10] Proposition 5.2.1, for details).

Lemma 2.3. If h ∈ k[X] r k, then k[h] is a maximal element in the family M if and
only if the algebra k[h] is integrally closed in k[X]. In particular, if f ∈ k[X] r k, then
the integral closure of k[f ] in k[X] is of the form k[g], for some g ∈ k[X] r k.

Note also the following obvious lemma.

Lemma 2.4. Let A be a k-subalgebra of k[X]. If A is integrally closed in k[X], then the
field A0 is algebraically closed in k(X).

If d is a derivation of a ring R, then we denote by Rd the kernel of d, that is, Rd =
{r ∈ R; d(r) = 0}. Note that Rd is a subring of R. If R is a field, then Rd is a subfield
of R. The next lemma is a modification of Lemma 4 in [14].

Lemma 2.5. Let M ⊂ K ⊂ L be fields (of characteristic zero) such that the extension
K ⊂ L is algebraic. Assume that d : K → K is an M-derivation such that Kd = M
and let d : L → L be the derivation which is the unique extension of d to L. If M is
algebraically closed in L, then Ld = M .

Proof. Let u ∈ L, d(u) = 0. Since u is algebraic over K, there exists a minimal
m ≥ 1 such that um + am−1u

m−1 + · · · + a1u0 = 0, for some a0, . . . , am−1 ∈ K. Applying
d and using that d(u) = 0 we get that d(am−1)u

m−1 + · · · + d(a1)u + d(a0) = 0. ¿From
the minimality of m it follows that d(ai) = 0 for all i, that is, a0, . . . , am−1 ∈ Kd = M .
Hence, u is algebraic over M . But M is algebraically closed in L, so u ∈ M . Therefore,
Ld = M . �

Let δ be a derivation of k[X]. We denote by δ the unique extension of δ to k(X). The

field k(X)δ is called the field of constants of δ. If k(X)δ = k, then we say that the field of
constants of δ is trivial. A collection of examples of derivations of k[X] with trivial field
of constants can be found, for instance, in [10]. Now we recall some of these examples.

3



Let δ1, . . . , δ5 be derivations of k[X] := k[x1, . . . , xn] (where n > 2) defined as follows:

δ1 = ∂1 + (x1x2 + 1)∂2 + (x2x3 + 1)∂3 + · · ·+ (xn−1xn + 1)∂n,

δ2 = (x1x2 · · ·xn−1)
(
∂1 + 1

x1
∂2 + 1

x2
∂3 + · · ·+ 1

xn−1
∂n

)
,

δ3 = ∂1 + x2∂2 + x2x3∂3 + · · ·+ x2x3 · · ·xn∂n,

δ4 = xs2∂1 + xs3∂2 + · · ·+ xsn∂n−1 + xs1∂n, for n ≥ 3, s ≥ 2,

δ5 = x1x2∂1 + x2x3∂2 + · · ·+ xn−1xn∂n−1 + xnx1∂n,

where ∂i = ∂
∂xi

, for i = 1, . . . , n. It is known that every derivation δj, for j ∈ {1, . . . , 5},
has a trivial field of constants. If j = 1, then it is a consequence of Shamsuddin’s result
[12] (see [10] Example 13.4.3). For j = 2 see S. Suzuki [14]. For j = 3 see H. Derksen

[3]. The derivation δ4 is called a Jouanolou derivation. A proof that k(X)δ4 = k is due to
H. Żo la̧dek [17] (in [5] is a proof in the case when n is prime). For j = 5 see [6] (or [10]).

Let δ6 be a derivation of k[x1, x2] defined by

δ6 = ax1∂1 + (ax2 + x1)∂2,

where 0 6= a ∈ k. This derivation has also a trivial field of constants (see [8] or [10]).

3 Constructions

Let f ∈ k[X]r k and ϕ ∈ k(X)r k[X]. In this section we present a construction of a
derivation d of k[X] whose ring of constants k[X]d is equal to the integral closure of k[f ]
in k[X]. Moreover, we present also a construction of a derivation d0 of k[X] whose field of

constants k(X)d0 is equal to the algebraic closure of k(ϕ) in k(X). We already know (see
Introduction) that such constructions are clear for n ≤ 2. Hence, we assume that n ≥ 3.

Since f 6∈ k, there exists an i ∈ {1, . . . , n} such that ∂f
∂xi
6= 0. Let us assume (for

simplicity) that i = n, that is, ∂f
∂xn
6= 0.

Consider now a derivation δ of the polynomial ring k[x1, . . . , xn−1] with a trivial field

of constants, that is, k(x1, . . . , xn−1)
δ = k. We presented a list of examples of such deriva-

tions in the previous section. Denote by ∆ the derivation of k[X] = k[x1, . . . , xn−1][xn]
given by

∆(x1) = δ(x1), . . . , ∆(xn−1) = δ(xn−1) and ∆(xn) = 0,

and let d : k[X]→ k[X] be the derivation defined by

(1) d = −∆(f) ∂
∂xn

+ ∂f
∂xn

∆.

It is clear that k[f ] ⊆ k[X]d.

Now let ϕ = u
v
∈ k(X) r k[X], where u, v ∈ k[X] and v 6= 0. Assume that ∂ϕ

∂xn
6= 0,

and let ∆ be the extension of the above derivation ∆ to k(X). Then the elements v2∆(ϕ)
and v2 ∂ϕ

∂xn
belong to k[X]. Put

(2) d0 = −v2∆(ϕ) ∂
∂xn

+ v2 ∂ϕ
∂xn

∆.

Then d0 is a derivation of k[X] and it is clear that k(ϕ) ⊆ k(X)d0 .
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Theorem 3.1. If d is the derivation defined by (1), then the ring k[X]d is equal to the

integral closure of k[f ] in k[X], and the field k(X)d is equal to the algebraic closure of
k(f) in k(X).

Proof. Denote by A the integral closure of k[f ] in k[X] and put M := A0. Then (see

Lemma 2.4) M is the algebraic closure of k(f) in k(X). Note that k(X)d ∩ k[X] = k[X]d.
Let D := w−1d, where w = ∂f

∂xn
(recall that w 6= 0). Then it is obvious that D is an

M -derivation of k(X).
Since ∂f

∂xn
6= 0, the polynomials x1, . . . , xn−1, f are algebraically independent over k,

and this implies that the field extension M(x1, . . . , xn−1) ⊆ k(X) is algebraic. Observe
that D(xi) = δ(xi) for all i = 1, . . . , n− 1. Hence, the restriction of D to the polynomial
ring M [x1, . . . , xn−1] is an M -derivation with a trivial field of constants. But the field M
is, by Lemma 2.4, algebraically closed in k(X). So, Lemma 2.5 implies that k(X)D = M .

Hence, k(X)d = M , because D = w−1d, and hence k(X)d equals to the algebraic closure

of k(f) in k(X). Moreover, we have: k[X]d = k(X)d ∩ k[X] = M ∩ k[X]. But M = A0

and A is (by Lemma 2.3) of the form k[g] for some g ∈ k[X] r k. Therefore, by Lemma
2.1, M ∩ k[X] = A, that is, k[X]d = A. �

Repeating the arguments from the above proof and using small modifications we obtain
the following theorem.

Theorem 3.2. If d0 is the derivation defined by (2), then the field k(X)d0 is equal to the
algebraic closure of k(ϕ) in k(X).

Proof. Denote by M the algebraic closure of k(ϕ) in k(X). Let D := w−1d0, where
w = ∂ϕ

∂xn
(recall that w 6= 0). Then it is obvious that D is an M -derivation of k(X).

Since ∂ϕ
∂xn
6= 0, the elements x1, . . . , xn−1, ϕ are algebraically independent over k, and

this implies that the field extension M(x1, . . . , xn−1) ⊆ k(X) is algebraic. Observe that
D(xi) = v2δ(xi) for all i = 1, . . . , n − 1. Hence, the restriction of D to the polynomial
ring M [x1, . . . , xn−1] is an M -derivation with trivial field of constants. But the field
M is algebraically closed in k(X). So, Lemma 2.5 implies that k(X)D = M . Hence,

k(X)d0 = k(X)w
−1d0 = k(X)D = M . �

Using the above constructions and the derivations δ1, . . . , δ6, defined in the previous
section, we obtain the following examples.

Example 3.3. Let d1, d2, d3 be derivations of k[x, y, z] defined as follows:

d1 = z∂x + z(xy + 1)∂y − (xy2 + x+ y)∂z,

d2 = z∂x + yz∂y − (x2 + y)∂z,

d3 = xz∂x + z(x+ y)∂y − (x2 + xy + y2)∂z.

Then k[x, y, z]di = k[x2 + y2 + z2] and k(x, y, z)di = k(x2 + y2 + z2), for i = 1, 2, 3. �
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Example 3.4. Let d1, d2, d3 be derivations of k[x, y, z] defined as follows:

d1 = xy∂x + xy(xy + 1)∂y − z(x2y + x+ y)∂z,

d2 = x∂x + xy∂y − z(x+ 1)∂z,

d3 = xy∂x + y(x+ y)∂y − (x+ 2y)∂z.

Then k[x, y, z]di = k[xyz] and k(x, y, z)di = k(xyz), for i = 1, 2, 3. �

Example 3.5. Let d1, . . . , d5 be derivations of k[x, y, z, u] defined as follows:

d1 = u∂x + u(xy + 1)∂y + u(yz + 1)∂z − (xy2 + yz2 + x+ y + z)∂u,

d2 = xyu∂x + yu∂y + xu∂z − (x2y + xz + y2)∂u,

d3 = u∂x + yu∂y + yzu∂z − (yz2 + y2 + x)∂u,

d4 = y2u∂x + z2u∂y + x2u∂z − (x2z + xy2 + yz2)∂u,

d5 = xyu∂x + yzu∂y + xzu∂z − (x2y + y2z + z2x)∂u.

Then k[x, y, z, u]di = k[x2 + y2 + z2 + u2] and k(x, y, z, u)di = k(x2 + y2 + z2 + u2), for
i = 1, . . . , 5. �

Example 3.6. Let d1, . . . , d5 be derivations of k[x, y, z, u] defined as follows:

d1 = xyz∂x + xyz(xy + 1)∂y + xyz(yz + 1)∂z + u(x2yz − xy2z − xy + xz + yz)∂u,

d2 = xy∂x + yz∂y + xz∂z − u(x− y − z)∂u,

d3 = x∂x + xy∂y + xyz∂z − u(xy − x− 1)∂u,

d4 = xyz∂x + yz∂y + xz∂z + u(yz − x+ z)∂u,

d5 = xy3z∂x + xyz3∂y + x3yz∂z − u(x3y − xz3 − y3z)∂u.

Then k(x, y, z, u)di = k
(
xy
zu

)
, for i = 1, . . . , 5. �
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